Higher-order chromatin structure: bridging physics and biology.

نویسندگان

  • Geoffrey Fudenberg
  • Leonid A Mirny
چکیده

Advances in microscopy and genomic techniques have provided new insight into spatial chromatin organization inside of the nucleus. In particular, chromosome conformation capture data has highlighted the relevance of polymer physics for high-order chromatin organization. In this context, we review basic polymer states, discuss how an appropriate polymer model can be determined from experimental data, and examine the success and limitations of various polymer models of higher-order interphase chromatin organization. By taking into account topological constraints acting on the chromatin fiber, recently developed polymer models of interphase chromatin can reproduce the observed scaling of distances between genomic loci, chromosomal territories, and probabilities of contacts between loci measured by chromosome conformation capture methods. Polymer models provide a framework for the interpretation of experimental data as ensembles of conformations rather than collections of loops, and will be crucial for untangling functional implications of chromosomal organization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher order structure in a short repeat length chromatin

Polynucleosomes from calf brain cortical neurone nuclei have an average repeat length of less than 168 base pairs. The ability of this material to adopt higher order structure has been assessed by various physical techniques. Although containing on average less DNA per nucleosome than is required to form a chromatosome, this short repeat length chromatin folded in an H1 dependent manner to a st...

متن کامل

ISWI Regulates Higher-Order Chromatin Structure and Histone H1 Assembly In Vivo

Imitation SWI (ISWI) and other ATP-dependent chromatin-remodeling factors play key roles in transcription and other processes by altering the structure and positioning of nucleosomes. Recent studies have also implicated ISWI in the regulation of higher-order chromatin structure, but its role in this process remains poorly understood. To clarify the role of ISWI in vivo, we examined defects in c...

متن کامل

P-54: Evaluation of The Acute and Chronic Effects of Different Gold Nanoparticle Doses on Sperm Parameters and Chromatin Structure in Mice

Background The solid and colloidal particles in the range of 1-100 nm are called nanoparticles. Recently, one of the most important metal nanoparticles, with wide usage is gold nanoparticle. Based on the previous studies, gold nanoparticles have spermatotoxic effects and can destroy sperm motility. The aim of present study is the effect of gold nanoparticles on chromatin quality and sperm param...

متن کامل

Participation of core histone "tails" in the stabilization of the chromatin solenoid

We show here that the solenoid is maintained by the combination of linker histones and the nonglobular, highly basic "tails" of the core histones, which play only a minor part in the formation of the nucleosome core (Whitlock and Simpson, 1977. J. Biol. Chem. 252:6,516--6,520; Lilley and Tatchell, 1977. Nucleic Acids Res. 4:2,039--2,055; and Whitlock and Stein, 1978. J. Biol. Chem. 253:3,857--3...

متن کامل

Higher-order genome organization in human disease.

Genomes are organized into complex higher-order structures by folding of the DNA into chromatin fibers, chromosome domains, and ultimately chromosomes. The higher-order organization of genomes is functionally important for gene regulation and control of gene expression programs. Defects in how chromatin is globally organized are relevant for physiological and pathological processes. Mutations a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current opinion in genetics & development

دوره 22 2  شماره 

صفحات  -

تاریخ انتشار 2012